

    
      
          
            
  
Welcome to i3py’s documentation!

I3py is a Python package for instrument interfacing.





	User guide for I3py


How to set up I3py and use it.






	Extending I3py


You need to add a new instrument to I3py, write some tests, add a simulated
instrument, a functionality or simply understand what happens behind the
scene you should start here.






	FAQS


Some questions that might have occurred to others too.






	api_docs/index


When all else fails, consult the API docs to find the answer you need.
The API docs also include convenient links to the most definitive
I3py documentation: the source.











Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
User guide for I3py





          

      

      

    

  

    
      
          
            
  
Extending I3py





	Driver machinery


You need to interface a new instrument, modify one or simply understand
how the machinery works start here.






	tests/index


You want to automatize the testing of your driver so that you can quickly
know if your last update is safe, you should find the infos you need here.






	simulated/index


You need a simulated instrument for testing, here are the explanations on
how to write one.









Note

When writing code for I3py you should follow the project style guides
described in Style guide.







          

      

      

    

  

    
      
          
            
  
Driver machinery

I3py strives to provide a convenient but flexible interface to write drivers
that can handle the full complexity of the instrument you need to interface.
Of course this has some cost in term of internal complexity, but those are
believed to be worth it.

This section of the documentation will first take you through the notions used
in I3py to structure your driver, and how to use them to write your driver. It
will try to remain generic but will use the case of instruments controlled
through the VISA protocol to illustrate the examples as it is a very common
case.

Once this done, the following sections will dive in the detailed working of
the different components making up a driver, and will explore in more details
some of the notions previously presented. The reading of those sections is not
mandatory to write a driver but will help you understand the inner working
of I3py and help you tackle more challenging driver designs.



	1. Writing a driver
	1.1. General organization

	1.2. Creating the driver

	1.3. Adding a Feature

	1.4. Adding an Action

	1.5. Using subsystem and channels

	1.6. Handling options

	1.7. Special class variables for VISA based driver

	1.8. Making the driver accessible from the top level manufacturer package





	2. Features
	2.1. Working principle

	2.2. Usual configurations

	2.3. Flexible getter/setter





	3. Actions
	3.1. Working principle

	3.2. Usual configurations





	4. Subsystems and channels
	4.1. Subsystems

	4.2. Channels





	5. Advanced customization
	5.1. Defining custom handler

	5.2. Composing custom behavior and existing ones





	6. Standards









          

      

      

    

  

    
      
          
            
  
1. Writing a driver

This section will focus on giving you a quick overview of the tools available
to you to write your driver. While it should be sufficient to write simple
drivers you may want to check the following sections for more detailed
explanations.


Note

It may seem obvious, but, in order to write a driver for your instrument
you need both a good knowledge of the instrument and to read its manual.
Finally you need to have access to the real instrument as the manual is
likely to be elliptic if not incorrect in some cases (and it is perfectly
possible for your instrument firmware to be buggy). Finally in the early
stages of development you should make sure you can communicate with your
instrument using a third party tool such as NiMAX for VISA instruments or
the vendor provided software in other cases.




Contents


	Writing a driver


	General organization


	Creating the driver


	Adding a Feature


	Adding an Action


	Using subsystem and channels


	Handling options


	Special class variables for VISA based driver


	INTERFACES


	DEFAULTS


	NON_VISA_NAMES






	Making the driver accessible from the top level manufacturer package











1.1. General organization

I3py drivers are organized along the following concepts:


	the “driver” is at the highest level, it is responsible for handling the
communication with the physical instrument.


	the parameters of the instrument that can be read and possibly set by the
user, and whose value does not change spontaneously (any measured quantity
typically falls outside this category) are described using “features”, which
are advanced and highly customizable descriptors (ie properties, please refer
to Python documentation if you do not know what a property is).


	the operations that an instrument can perform (such as a measure), are
described using an “action” that is a simple wrapper around a method. It
provides optionally some validation/conversion of the argument and return
values.


	finally drivers can be structured in “subsystems” and multiple channels or
cards inside a rack can be described using a “channel”, which is nothing else
than a subsystem with an attached id.




All the above concepts will be illustrated below on concrete examples.




1.2. Creating the driver

In I3py, each driver is defined in a class declaration. All drivers should
inherit from the BaseDriver class, however most of the time you will most
probably use a derived class handling the low-level communication with the
instrument such as i3py.backends.visa.message_based.VisaMessageDriver.

As I3py strives for uniformity in the drivers, it provides for some instruments
a standardized base class defining the expected features and actions. As those
‘standards’ cannot assume any communication mean with the instrument, to use
those your driver should inherit from a base class handling the communication
and all the ‘standards’ your instrument supports.

class MyDriver(VisaMessageDriver, IEEEIdentify):
    """My driver (supporting *IDN?) docstring.

    """
    pass





If no base class provides the proper communication method to read and write the
values of the instrument features, you will have to implement the following
methods:



	default_get_feature(): This method is charged with querying
the value of the feature.
See the API docs for more details.


	default_set_feature(): This method is charged with setting
the value of the feature.
See the API docs for more details.


	default_check_operation(): This method is charged with
checking that setting a feature did go properly. This method is free to
use any method it see fit to perform this check.
See the API docs for more details.







For more details about what are standards and how to use them please refer to
Standards


Note

To simplify the handling of changes to driver over time I3py enforce to
add a class variable __version__ to all drivers. The format of this
variable should be the one of a usual version string:
MAJOR.MINOR.MICRO






1.3. Adding a Feature

A Feature describes a property of the instrument, that, as already mentioned
does not change in a spontaneous way. This restriction comes from the fact that
the values of features are cached. They can and should be discarded when some
other setting of the driver is modified, but not in a spontaneous manner.

To add a Feature to your instrument you have nothing else to do that assign
a Feature subclass to an identifier. As illustrated in the example below :

class MyDriver(VisaMessageDriver, IEEEIdentify):
    """My driver (supporting *IDN?) docstring.

    """
    mode = Unicode('MODE?', 'MODE {}', values=('CW', 'PULSED'))





The first argument is the command to get the value of the feature, the second
the command to set it. For message based VISA driver, this is the true SCPI
command string and the braces will be filled with the set value.

Additional keywords are used to customized the action taken before
getting/setting a value (such as checking this is allowed), how to extract
the value or how to validate that the value is meaningful for the instrument.

When subclassing an existing instrument it is often possible that a feature
already exists on the parent class but is not properly configured (for example
the values are incorrect). In such cases, it is not necessary to entirely
redefine the feature, one can use set_feat to change the proper keyword
arguments values.

class MyNewDriver(MyDriver):
    """My driver (supporting *IDN?) docstring.

    """
    mode = set_feat(values=('CW', 'PULSED', 'TRIGGERED'))





The detailed working of Features is detailed in Features, and
all the existing  features are described in the API. Finally, as instruments
can be often quite surprising in their behaviors, the default behaviors of the
provided features may prove insufficient. More complex customization are
possible and detailed in the section Advanced customization of this manual.




1.4. Adding an Action

Actions are light wrapper around methods. They provide similar facility to run
checks and conversion on the input and output values as do features. To declare
one, you only have to declare a method:

class MyDriver(VisaMessageDriver):
    """My driver (supporting *IDN?) docstring.

    """

    @Action(values={'kind': ('volt', 'curr')})
    def read_state(self, kind):
        """Read the instrument state.

        """
        pass





The above example shows how to check the value of an argument is valid.

The detailed working of actions is described in Actions section.
Just like  features several classes of actions exist and are describe in the
API. Actions support advanced customization just like features which are
described in section Advanced customization


Note

To improve readability and allow third-party tool to improve the
integration of I3py drivers, it recommended to provide type annotations
for Action and in particular for their return values.






1.5. Using subsystem and channels

Subsystems allow to group features into coherent ensemble, which can allow to
avoid ridiculously long names. For example many lock-in amplifiers include a
built-in oscillator and subsytems allow for example to group the related
features such as amplitude and frequency as shown below:

class MyDriver(VisaMessageDriver):
    """My driver (supporting *IDN?) docstring.

    """

    oscillator = subsystem()
    with oscillator as o:

        o.frequency = Float('OSC:FREQ?', 'OSC:FREQ {}')





Actions can also be attached to a subsystems:

class MyDriver(VisaMessageDriver):
    """My driver (supporting *IDN?) docstring.

    """

    oscillator = subsystem()
    with oscillator as o:

        @o
        @Action()
        def is_sync(self):
            pass





By default, a subsystem is a subclass of :py:class: ~i3py.core.base_subsystem.SubSystem and any subsystem of the
parent class of the driver. You can specify additional base classes as a tuple
passed as first argument to subsystem.

Channels are similar to subsytems but are identified by an id as an instrument
may have an arbitrary number of channel of the same kind (the default class is
Channel). Adding a channel to an instrument is similar to adding a subsystem
save that one must specify what are the valid channel ids. One can specify a
static list of ids or a the name of a method on the parent listing the
available channels when called. This method should take no argument.
Furthermore one can declare, aliases for the channel ids to provide more user
friendly name than the ones used by the driver.

For more details please refer to the API documentation or to the dedicated
section of the documentation about subsystems and channels
Subsystems and channels.




1.6. Handling options

Depending on the instrument firmware or the option bought, some capabilities of
the instrument may not be available. To reflect this reality, i3py allows to
define special features Options used to recover the instrument options.


Note

A single driver can define multiple options features but they all use
different names.



Features, actions, subsystem and channel all support a dedicated keyword
argument ‘options’ to specify tests to perform on the instrument option before
granting the user access to it for the first time. The full check is only
performed the first time since options are meant to describe hardware or
firmware settings that cannot change during the instrument operation. The
format in which to specify the checks is the following:


‘feature_options_name[‘option_name’] == option_value’




Actually any valid boolean assertion can be evaluated so if an option can only
be True or False the equality test is useless. Furthermore multiple tests can
be separated by “;” .


Note

Operation that cannot be performed at runtime because the instrument is not
properly configured fall outside the scope of options and should be
inhibited if necessary using the ‘checks’ mechanism that exists on
features, actions, subsystems and channels.



For more details please refer to the API documentation.




1.7. Special class variables for VISA based driver

In the case of VISA based drivers, it is desirable to specify which
communication interfaces are supported by the instrument, along which the
parameters to use (such as termination characters, which may differ between
interfaces). All those information can be specified to I3py drivers through
the use of the class level variables listed below.


Note

To avoid polluting the driver namespace, VISA specific method are grouped
in the visa_resource subsystem, accessible from the top level driver.




1.7.1. INTERFACES

Dictionary specifying the interfaces supported by the instrument. For each
type of interface a dictionary (or a list of dictionary), specifying the
default arguments to use should be provided. Valid interfaces are :


	ASRL: serial interface (RS232)


	USB: usb interface


	TCPIP: ethernet based interface


	GPIB: gpib based interface


	PXI: pxi based interface


	VXI: vxi based interface




For each supported interface, the dictionary should contain at least the
resource class to use. In addition, it can contain interface specific
settings that users will not have to provide to start the driver. For
example, if the instrument support the using raw sockets on TCPIP, the port
number is required and can be specified as follow.

INTERFACES = {'TCPIP': {'resource_class': 'SOCKET',
                        'port': '50000'}}





The valid keys for each interface matches the named used in VISA resource
names which are described in PyVISA documentation [https://pyvisa.readthedocs.io/en/stable/names.html].




1.7.2. DEFAULTS

Dictionary specifying the default parameters to use for the VISA session.
As some of those can be interface or resource specific, the valid keys for the dictionary include any pair (interface_type, resource_class), any
interface_type, any resource_class and ‘COMMON’ that applies
to all interfaces/resources. The values associated to each key is expected to
be a dictionary, whose keys match the attributes of the underlying VISA
resource. The most commons are:


	write_termination: character appended at the end of each sent message


	read_termination: character expected at the end of each received message.


	timeout: time in ms after which to consider that the communication failed.







1.7.3. NON_VISA_NAMES

By default all arguments passed to a VISA driver are used to build the
resource name. This class holds a tuple of named reserved to other use.
By default it is set to (‘parameters’, ‘backend’), which should be
sufficient be sufficient in most cases.

‘parameters’ is a dictionary whose content is by default passed to the
underlying PyVISA object, but it is a matter of simply overriding initialize
to handle it in a different fashion.


Note

Serial instruments usually requires to be switched to remote control before
accepting any instruction. To streamline this process, the i3py.drivers.common.rs232.VisaRS232
provides the automatic addition of the proper header to all outgoing
messages when one connect to the instrument through its serial interface
(and only then). The header to use can be specified as a BYTE string using
the RS232_HEADER class variable.








1.8. Making the driver accessible from the top level manufacturer package

Drivers in I3py are organized by manufacturers (inside each manufacturer
package, they can be organized by instrument type). However because building
the driver class is more expensive than regular Python classes, I3py provides
a way to make drivers visible from the top level manufacturer package that
does not lead to their automatic import when the manufacturer package is
imported. In particular this means that to import just one instrument from one
manufacturer you do not import all the drivers for the manufacturer instrument.

To achieve this, I3py replace the manufacturer package module by a custom one
providing lazy import capabilities. For each manufacturer, the top level
package should look like:

# -*- coding: utf-8 -*-
# -------------------------------------------------------------------------
# Copyright 2018 by I3py Authors, see AUTHORS for more details.
#
# Distributed under the terms of the BSD license.
#
# The full license is in the file LICENCE, distributed with this software.
# -------------------------------------------------------------------------
"""Package for the drivers of Itest instruments.

"""
import sys
from i3py.core.lazy_package import LazyPackage

DRIVERS = {'BN100': 'bn100.BN100'}

sys.modules[__name__] = LazyPackage(DRIVERS, __name__, __doc__, locals())





The DRIVERS dictionary contains a mapping between the name of the drivers
that should be accessible and their import path (typically
module_name.class_name). To make your driver visible simply add it to this
dictionary. If you driver is defined in a sub-package and this package is
itself lazy, your driver will be visible as soon as it is visible in the
sub-package and that the sub-package is imported in the manufacturer package.







          

      

      

    

  

    
      
          
            
  
2. Features

Features are descriptors just like standard Python property. They live on the
class and define what happens when one gets or sets the attribute associated
with the feature on a class instance, that is to say when one writes:

a = d.myfeature





or:

d.myfeature = 1





The following sections will describe the different steps involved in the
getting and setting process and how they can be customized using the different
arguments it takes. Even more advanced customizations are possible and will be
described in their own part Advanced customization.


2.1. Working principle

First we will describe the process involved in retrieving a feature value
then switch to describing the setting of it.


Note

The first two arguments of a feature are always the getter and setter.
If their value is set to None, the corresponding operation won’t be
possible for the feature. A feature is always deletable and deleting it
corresponds to discarding the cached value if any exists.




2.1.1. Getting chain

First when getting a feature, we check if the instrument options allow
to access it, and if not an AttributeError is raised. Next, we check
whether or not its current value is known. If it is, the cached value
is directly returned otherwise the system proceed with the retrieval
sequence, in three steps as follows:


	pre_get():
This step is in charge to check that we can actually retrieve the
value from the instrument. Some assertions about the instrument
current state can for example be performed.


	get():
This step is tasked with the actual communication with the
instrument. It should retrieve the value from the instrument and
pass to the next step without performing any conversion. By default,
it will call the default_get_feature() method defined on
the class it belongs and pass it the value of the getter argument
passed to the feature when it was created.


	post_get():
This step is tasked with converting the value obtained at the get
step into a more user friendly representation than what was returned
by the instrument. It can for example extract the meaningful part
of the instrument response and turn it into the proper type, such as
an integer or a float. It can also check for an error state on the
instrument even so get operation should not cause any issue and such
checks should be left to the setting.




The value coming out of the post_get step is cached and then returned
to the user. If an error occurs during any of the step, if it is one
of the ones listed in the retries_exceptions attribute of the driver
the connection will be closed and re-opened and the operation attempted
anew. Otherwise or if the re-opening fails too many times (more than
specified in the retries argument of the feature), an I3pyFailedGet
exceptions will be raised while still pointing to the original errors.




2.1.2. Setting chain

First when setting a feature, we check if the instrument options allow
to access it, and if not an AttributeError is raised. Next, the value
is checked against the cached value. If both values are found to be
equal, the set is not performed as it would be useless. Otherwise, we
proceed with the setting sequence, which, like the getting, happens in
three steps:


	pre_set():
During this step, the state of the instrument can be checked and the
value passed by the user validated and converted to a format
appropriate to pass to the instrument.


	set():
This step is dedicated to actually communicating with the instrument
to set the value. If the instrument returns any value that can be
used to check that the operation went without issue, it should be
returned so that it can be passed up to the next method. By default,
it will call the default_set_feature() method defined on
the class it belongs and pass it the value of the setter argument
passed to the feature when it was created.


	post_set():
This step main goal is to check that the operation of setting the
value went without trouble. By default, it simply calls the
default_check_operation() on the parent class.




Once the value has been set and if no error occurred, the value
specified by the user is cached.  If an error occurs during any of the
step, if it is one of the ones listed in the retries_exceptions
attribute of the driver the connection will be closed and re-opened
and the operation attempted anew. Otherwise or if the re-opening fails
too many times (more than specified in the retries argument of the
feature), an I3pyFailedSet exceptions will be raised while still
pointing to the original errors.






2.2. Usual configurations

In addition to the ‘getter’ and ‘setter’ previously mentioned I3py features
provides a number of often required checks, data extraction and data conversion
utilities. The following list illustrates them:


	‘options’: available on all Feature subclasses

A “;” separated list of checks to perform on options values to determine if
the Feature can be used. Options are defined using the Options feature.
The test is performed a single time and then cached.



	‘checks’: available on all Feature subclasses

Similar to options, but can be used to check any value and is performed
each time the feature is get or set.



	‘extract’: available on all Feature subclasses

A format string specifying how to extract the value of interest from the
instrument response.



	‘discard’: available on all Feature subclasses

A list of features whose cache value should be discarded when the feature
value is set. Alternatively a dict whose keys are ‘features’ and ‘limits’
can be used to also specify to discard some cached limits. One can access to
the features and limits defined on the parent component using leading dots.



	‘values’: available on Str, Int and Float

A tuple of acceptable values for the feature.



	‘mapping’: available on Str, Int and Float

A mapping between user meaningful values and instrument meaningful ones.



	‘limits’: available on Int and Float

A 2-tuple, 3-tuple or str specifying the minimal and maximal values
allowed and optionally the resolution that the feature can take. In the
case of a str, the string specifies the named limit to use (see the
following paragraph about defining limits).



	‘aliases’: available on Bool

A dictionary whose keys are True and False and whose values (list)
specifies accepted aliases for True and False for setting.






Note

In many cases, the range of allowed values for a specific feature is not
fixed but may be related to another feature value. To handle this case,
I3py allows to define dynamic limits using the limit() decorator. The
decorated method should return an instance of IntLimitsValidator or
FloatLimitsValidator depending the kind of value this limit applies to.




2.2.1. Specialized features


	The Alias feature is a special feature allowing to delegate the actual
work of getting/setting to another feature.


	The Register is a specialized feature which can be used to get and set
the value of a binary register such as the ones commonly used by VISA based
instrument. It will create a dedicated subclass of IntFlag and will handle
the conversion. It takes two special arguments:



	names: a list of names describing each bit in order (from least
significant to most significant) or a dictionary mapping each name to the
bit it describe. Those names should be valid python attribute names and
ideally be all upper case.


	length: the length of the register (8 by default but some instrument use
16 bits register).









	The Options is feature dedicated to the handling of hardware/firmware level
options that cannot change while the instrument is running. It is expected
to return a dictionary containing the values of the instrument options. To
improve clarity the declaration of the feature should include the names of
all the options to which it gives access along with hint about their possible
values either as type or as a tuple of values. These information should be
provided as a dictionary to the names argument.









2.3. Flexible getter/setter

In some cases, the command to use to get/set a Feature may depend on the state
of the instrument. This use case can be handled by using a custom get/set
method as described in Advanced customization. However as such cases can be
quite common, I3py provides an alternative mechanism based on factory class to
which the building of the get/set method can be deferred. Such factory classes
should inherit from AbstractGetSetFactory and can be used for the
getter/setter arguments of a feature.

The factories implemented in I3py can be found in
i3py.core.features.factories.







          

      

      

    

  

    
      
          
            
  
3. Actions

Actions are the equivalent of features for methods. While features allows
custom access to attributes, actions allow custom access and calling of
methods. They allow in particular to specify checks or conversions on the
methods arguments and return values.

The following sections will describe the different steps involved when calling
an Action and how they can be customized using the different arguments it
takes. Even more advanced customizations are possible and will be described in
their own part Advanced customization.


Note

If some cases, an action may start an operation that the instrument will
take a long time to process. In such a case it is best to return an
InstrJob object that can be used at the appropriate time to wait for
completion than to block the interface for a long time.




3.1. Working principle

When accessing an Action (d.action), we check first if the instrument options
allow to access it, and if not an AttributeError is raised. Under normal
circumstances, Python would return a bound method than we can next call. For
actions, we return an ActionCall which takes in charge to run the three steps
of the call:



	pre_call():
This step is in charge to check that we can actually perform the
wrapped action. Some assertions about the instrument current state
and argument values can for example be performed.


	call():
Call the wrapped method passing as argument the argument as returned
by the pre-call step.


	post_call():
This step is tasked with converting the return values of the call and
running some additional checks.










3.2. Usual configurations

In addition to the ‘getter’ and ‘setter’ previously mentioned I3py features
provides a number of often required checks, data extraction and data conversion
utilities. The following list illustrates them:




	‘options’: available on all BaseAction subclasses







A “;” separated list of checks to perform on options values to determine if
the Action can be used. Options are defined using the Options feature.
The test is performed a single time and then cached.



	‘checks’: available on Action







A “;” separated list of checks to perform each time the action is called.
All the method arguments are available in the assertion execution
namespace so one can access to the driver using self and to the arguments
using their name (the signature of the wrapper is made to match the
signature of the wrapped method).



	‘values’: available on Action







A dictionary mapping the argument names to their allowed values (tuple).
Arguments not listed in this dictionary are simply not validated.



	‘limits’: available on Action







A dictionary mapping the argument names to their limits. Arguments not
listed in this dictionary are simply not validated. Limits can be a
2-tuple, 3-tuple or str specifying the minimal and maximal values
allowed and optionally the resolution that the feature can take. In the
case of a str, the string specifies the named limit to use (see
Features about defining limits).





Note

The RegisterAction is a specialized action which can be used to read the
value of a binary register such as the ones commonly used by VISA based
instrument. It will create a dedicated subclass of IntFlag and will handle
the conversion. It takes two arguments:


	names: a list of names describing each bit in order (from least
significant to most significant) or a dictionary mapping each name to the
bit it describe.


	length: the length of the register (8 by default but some instrument use
16 bits register).












          

      

      

    

  

    
      
          
            
  
4. Subsystems and channels

Complex instruments usually have too many capabilities to fit reasonably in a
single namespace, which is why SCPI commands usually define a hierarchy.
Furthermore, either because the instrument is made of multiple parts or because
the notion is built-in the instrument, another recurrent notion is the one of
channel. Channels are usually identified by an id and share their capabilities.
To handle those two cases I3py uses the notions of “subsystems” and “channels”.
As channels inherit a number of capabilities from subsystems, we will first
describe them before moving on to the specificities of channels.


4.1. Subsystems

Subsystems act mainly as container and provide little capabilities by
themselves. They do however allow to group options and checks for all their
features and actions. The next following two sections focus on their
declaration and on the working principle of options and checks.


4.1.1. Declaration

Subsystems can be declared in the body of a driver using the following
syntax as already mentioned in Writing a driver.

class MyDriver(VisaMessageDriver):
    """My driver with a subsystem.

    """

    oscillator = subsystem()
    with oscillator as o:

        o.frequency = Float('OSC:FREQ?', 'OSC:FREQ {}')

        @o
        @Action()
        def is_sync(self):
            pass





Once created, the use of a context manager allows for the use of short
names but also some additional magic and it should hence be used.

While convenient, this syntax can be cumbersome if one needs to declare
nested subsystems/channels and as presented here would lead to large amount
of code duplication for similar instruments. To allow the declaration of
subsystems outside of a driver declaration, subsystem supports to be
passed a list of base classes as first argument (‘bases’). Those base
classes do not have to be subsystems themselves (subclass of
AbstractSubSystem) and if none of them are, a proper class will be added
by the framework.

When subclassing a driver which has subsystems, one can modify the
subsystems (adding/modifying actions/features) by simply redeclaring it
with the same name and proceeding as for a new one. The framework will
identify that the subsystem already exists and will use the version present
on the base class as base class for the subsystem.


Note

In the case of multiple inheritance, if several of the driver base
classes declare the same subsystem, the framework will use the one
present on the first class of the mro (Method Resolution Order, ie the
leftmost in the class creation). Other classes can be added as arguments of
subsystem.






4.1.2. Options and checks

As mentioned in the introduction, subsystems can define tests (options and
checks) that apply to all their features and actions. Those can be declared
just like for features and actions by passing strings defining the options
(‘options’ argument) and checks (‘checks’ argument).

The options will be tested when one try to access the subsystem from the
driver:

ss = driver.subsystem





If the tests do not evaluate to true, an AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] will be
raised mimicking a missing attribute. And as for all other options test the
result will be cached. To implement this, the subsystem is accessed through
a descriptor.


Note

By default, the framework uses i3py.core.subsystem.SubSystemDescriptor as descriptor to
protect the access to a subsystem. You can specify an alternative
descriptor using the ‘descriptor’ argument of subsystem. Alternative
descriptor should inherit from i3py.core.abstract.AbstractSubSystemDescriptor.



Checks on the other hand are run each time a feature is accessed or an
action is run. To achieve this, the framework customize the
features/actions of the subsystem by adding an ‘enabling’ step to
pre_get/set/call.


Note

When a inheriting a subsystem from a parent driver, the options and
checks defined in the subsystem call are appended to the ones existing
on the subsystem of the parent driver.






4.1.3. Features working in subsystems

In order for features to work in subsystems, subsystems implement:
default_get_feature(), default_set_feature(),
default_check_operation(). As a subsystem is nothing but a
container, it simply propagate the call to its parent, without altering the
arguments.






4.2. Channels

In several respects, channels are very similar to subsystems. Just as them,
they follow mostly the same logic as far as subclassing is concerned and
also support checks and options which work in the same way. The key
difference between subsystems and channels is that where only one subsystem
is instantiated per driver, multiple instances of a channel can be tied to
the same driver. The following section will describe the differences
between channels and subsystems.


4.2.1. Declaration

Channels are declared in the body of a driver using the following
syntax as already hinted in Writing a driver. The key difference with
a subsystem is that a way to identify the valid channels id is generally
required as first argument.

class MyDriver(VisaMessageDriver):
    """My driver with a channel.

    """

    channels = channel((1, 2, 3),
                       aliases={1: ('A', 'a'), 2: 'B', 3: 'C'})
    with channels as c:

        c.frequency = Float('CH{ch_id}:FREQ?', 'OSC:FREQ {}')

        @c
        @Action()
        def is_sync(self):
            pass





The valid ids for channel can be declared as above as a tuple or
list, which make sense when the number of channel is hardcoded in the
device. Alternatively, one can pass the name of a method existing on the
parent whose signature should be (self) -> Iterable.

In some cases, it may be handy to provide alternate names for channels for
the sake of clarity. One can do so by declaring aliases. Aliases should be
a dictionary whose keys match the ids of the channels and whose values are
the allowed alternatives. Alternatives can be specified either as a simple
value or as a list/tuple.

When subclassing a driver which has channels, if no channels ids are
provided the method used on the parent driver will be inherited, and the
aliases mapping will be updated with any new value provided (note that this
will use the provided dict to update the inherited one such that duplicate
keys will be overridden).


Note

As for subsystems one can specify base classes for a channel and the
same inheritance rules apply.






4.2.2. Usage

As explained in the user guide, channel instances can be accessed using the
following syntax:

driver.channels[ch_id]





where ch_id would 1, 2, 3 or any of their aliases in the previous case.

To achieve this and allow to check for options too, the channel machinery
uses, like subsystems, a descriptor to protect the access to the object
storing the channel instances, which we will refer to as the channel
container. To make things clear, when writing:

c = driver.channels





c is the channel container returned by the descriptor. In addition to
supporting subscription, the container is iterable and has the following
attributes:


	available: list of the ids of the channels that can be accessed.


	aliases: mapping between the declared aliases and the matching channel
id.




By default, the framework will use i3py.core.base_channel.ChannelDescriptor for the
descriptor and ChannelContainer for the channel container. Just like for
subsystems, it is possible to substitute to those classes custom ones using
the descriptor_type and the container_type keyword arguments. The
substitution classes should inherit from the proper abstract classes:
i3py.core.abstract.AbstractChannelDescriptor and AbstractChannelContainer respectively.




4.2.3. Features working in channels

In order for features to work in channels, channels implement:
default_get_feature(), default_set_feature(),
default_check_operation(). In the case of the first two
methods, a channel add its id under the keyword argument ch_id to the
keyword arguments and propagate the call the parent driver. For the third
method the call is simply forwarded on the parent.

The default behaviour is well fitted for VISA message based instruments when
the channel id is part of the command as in this case things work out the
box. The user simply has to indicate where to format the channel id, as
illustrated in the above example. For instrument that requires first the
channel to be selected, it is simply a matter of overriding the method
to prepend the channel selection command.









          

      

      

    

  

    
      
          
            
  
5. Advanced customization

The mechanisms presented in the previous sections allow to handle a large
number of situation occurring in real life instrument. However, in instruments,
there are corner cases, and those are actually not so rare and require to be
handled as gracefully as possible.

To handle those cases, I3py allows to customize the pre_get/set/call,
get/set/call, post_get/set/call of features and actions either by replacing
them by hand written function or by stacking on the existing behaviors custom
functions. The following sections will present the mechanisms involved.


5.1. Defining custom handler

Custom handlers can be defined using the following syntax:

from i3py.core import customize

class MyDriver(VisaMessageDriver, IEEEIdentify):
    """My driver (supporting *IDN?) docstring.

    """
    mode = Unicode('MODE?', 'MODE {}', values=('CW', 'PULSED'))

    @customize('mode', 'post_get')
    def _custom_mode_post_get(feat, driver, value)->Any:
        print(f'Read mode {value}')
        return value





Let examine in details how this works. First we import the customize
decorator. customize is actually a class, which we first instantiate. We pass
it the name of the feature/action on which it should apply, and the name of the
method of this descriptor that should be customized. Because, we did not
specify any additional argument the customization function will replace the
existing one. This is the simplest way to use the customization mechanism, but
it does not allow to combine existing mechanism with custom behavior. How to
achieve this will be discussed in the next section.

Next, we use to decorate a function. BE CAREFUL HERE, even though we are in
the body of a class, this function won’t be bound as a method of this class,
which is why we DO NOT USE self as first argument because it
WILL NOT BE the first argument this function will take. With that in mind,
one can notice that the signature of the function matches the signature of the
descriptor method to customize. Actually, it should match the signature exactly
(using the same argument names). Only self can be aliased to ‘feat’ when
customizing a feature and ‘action’ for actions, for the sake of clarity.


Note

As the exact signature of the action, may be painful to emulate one can use
instead (action, driver, *args, **kwargs) for pre_call and
(action, driver, result, *args, **kwargs) for post_call.



As this mechanism is quite advanced, it is picky and one must be careful when
using it. First, as already mentioned, the signature must be an exact match
for input arguments but additionally one must be careful to return the expected
value:


	None for pre_get() and post_set()


	a value for get() and call()


	the processed value for post_get(), pre_set() and
post_call()


	a potential answer from the instrument for set()


	a tuple of argument and a dictionary of keyword arguments for
pre_call()




Finally because of the way customization is handled, the function will not live
as a method on the final class and hence one cannot simply modify the
customization by simply overriding the method using the same name. One must
explicitly requires a replacement.




5.2. Composing custom behavior and existing ones

When one needs an existing behavior (such as ‘checks’) and a custom on the same
method, replacing the existing method would not be effective. To circumvent,
this issue I3py allow to pass an additional behavior to customize to indicate
that it should chain the call of the custom method and the existing one.
To chain the calls, it will effectively replace the customized function by
a MethodComposer instance which when called will call the chained functions.

The third argument of customize allow to specify how to perform the
composition. It must be a tuple even when it contains a single argument and the
possible values are the following:


	(‘prepend’,)


	(‘add_before’, existing_id)


	(‘add_after’, existing_id)


	(‘append’,)


	(‘replace’, existing_id)


	(‘remove’, existing_id)




The existing_id is a string allowing to identify the function with respect to
which ‘position’ the customization. For built-in functionalities, it matches
the keywords argument that was used to create it (‘checks’ for example).


Note

When a feature use multiple built-in mechanisms, those are composed using
the same principle.




Note

Customization are also given an id. By default, it is simply custom, but
one can specify a different value as the fourth argument to customize.



The way to chain the calls depends on the built-in function already present and
the goal of the customization. For example, a custom conversion in a get may
need to occur after the value was extracted from the instrument answer.







          

      

      

    

  

    
      
          
            
  
6. Standards

In order to improve inter-operability and allow, up to point, to replace one
instrument with another equivalent one, it is crucial for both instrument
interfaces to expose the same API to the user. I3py strives to achieve this
kind of interoperability. Of course, it can never be perfect as commonly some
instrument implement very specific behaviours not found in other. Furthermore,
one must accept that generality may mean that the interface may not appear as
simple as it could be because it takes into account possible variations in
other instruments. One example is the one of the instrument output (voltage,
microwave power, …) in many cases one can find equivalent instruments with
multiple outputs which is why the output of an instrument is often represented
as a channel. This allows to simply change the output id when swapping two
instruments. By convention, the id used for single output instruments is 0.

Trying to figure out, the “right” interface for a class of instrument is a
tedious task that requires to consider for the initial design two or three
instrument from different vendors. However once this work is done, implementing
new drivers becomes straightforward. In addition, one can implement generic
behaviours as part of a standard: the case of IEEE * commands is one example and
the SCPI ‘SYSTem:ERRor?’ is another. Implementing those behaviours once in a
standard allow to trivially support them in all instruments and limit code
duplication.

To allow to use standards at any level of a hierarchy (top driver, subsytem,
channel), all standards are implemented as simply inheriting HasFeatures.
To use them they simply need to be added to the base classes of the component
in which they belong.





          

      

      

    

  

    
      
          
            
  
Style guide

The uniformity of the coding style in a large project is of paramount
importance to make maintenance easier. I3py follows closely PEP8
recommendations which can be found here (PEP8 [https://www.python.org/dev/peps/pep-0008/]). One can automatically
format code using the autopep8 tool. Some of those rules and some additional
remarks are detailed below.


Contents


	Style guide


	Header


	Line length


	Docstrings


	Naming conventions


	Import formatting


	Python version compatibility











Header

All files part of I3py should start with the following header :

# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright 2016-2017 by I3py Authors, see AUTHORS for more details.
#
# Distributed under the terms of the BSD license.
#
# The full license is in the file LICENCE, distributed with this software.
# -----------------------------------------------------------------------------





New contributors should add their name to the AUTHORS file at the root of the
project.

Immediately following this header one should find the module docstring.




Line length

PEP8 [https://www.python.org/dev/peps/pep-0008/] specifies that lines should at most 79 characters long and this
rule is strictly enforced throughout I3py (in code and in comments).
This makes the code much easier to read and on work on (one does not have to
resize its editor window to accommodate long lines).

Backslashes should be used sparingly. To write an expression on multiple lines
the preferred method should be to surround it with parenthesis.


Note

Long strings can use triple quotes or the following trick to avoid
indentation issues :

msg = ('A very very long string, taking much more than a single line '
           'to write.')





The Python interpreter will automatically concatenate both strings when
reading the file. Please that it will not insert any space or line feed
(hence the space after ‘line’).






Docstrings

All functions, classes and methods should have a docstring (even private
methods). I3py use the Numpy-style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] docstrings which are human readable.




Naming conventions

The naming conventions taken from PEP8 specifications are the following :


	local variables and functions should have all lowercase names and use ‘_’ to
separate different words. ex : my_variable


	class names should start with a capital letter and each new word should also
start with one. ex : MyClass


	private variables or methods should start with a single ‘_’


	module constants should be in uppercase and use ‘_’ to separate different
words. ex : MY_CONSTANT







Import formatting

Imports should be at the top of the file (after the module docstring) save in
special cases. They should be group as follow (each group separated from the
following by a blank line) :


	special imports for Python 2/3 compatibility


	standard library imports


	third parties libraries imports


	relative imports




In each section the ‘import x’ stements should always come before the
‘from a import b’ statements.




Python version compatibility

I3py supports Python 3.5 and 3.6.







          

      

      

    

  

    
      
          
            
  
FAQS





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to i3py’s documentation!
        


      


    
  

_static/comment-bright.png





_static/ajax-loader.gif





